
COP 3223: C Programming (Strings – Part 4) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Strings In C – Part 4

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Strings – Part 4) Page 2 © Dr. Mark J. Llewellyn

The Character Handling Library

• Although we are primarily dealing with strings, processing of

character data within the strings is an important and often utilized

function of many application programs.

• The character handling functions are found in the <ctype.h>

standard library.

• Some of the more common character handling functions are

shown in the tables on the next two pages.

• Following the tables are several example programs that illustrate

some of the character handling functions in <ctype.h>.

COP 3223: C Programming (Strings – Part 4) Page 3 © Dr. Mark J. Llewellyn

Some Of The Functions In <ctype.h>

Function Prototype Function Description

int isdigit (int c); Returns a true (non-zero) value if c is a digit and 0 (false)

otherwise.

int isalpha (int c); Returns a true value if c is a letter and 0 (false) otherwise.

int isalnum (int c); Returns a true value if c is a digit or a letter and 0 (false)

otherwise.

int islower (int c); Returns a true value if c is a lowercase letter and 0 (false)

otherwise.

int isupper (int c); Returns a true value if c is an uppercase letter and 0 (false)

otherwise.

int tolower (int c); If c is an uppercase letter, this function returns c as a

lowercase letter. Otherwise, the function returns the argument

unchanged.

int toupper (int c); If c is a lowercase letter, this function returns c as an

uppercase letter. Otherwise, the function returns the argument

unchanged.

COP 3223: C Programming (Strings – Part 4) Page 4 © Dr. Mark J. Llewellyn

Some Of The Functions In <ctype.h>

Function Prototype Function Description

int isspace (int c); Returns a true (non-zero) value if c is a white-space character.

This includes: newline („\n‟), space („ „), form feed („\F‟),

carriage return („\r‟), horizontal tab („\t‟), or vertical tab („\v‟).

Otherwise a value of 0 (false) is returned.

int iscntrl (int c); Returns a true value if c is a control character and 0 (false)

otherwise.

int ispunct (int c); Returns a true value if c is a printing character other than a

space, a digit, or a letter and 0 (false) otherwise. (This

function is basically returning true for punctuation marks.)

int isprint (int c); Returns a true value if c is a printing character including a

space („ „) and 0 (false) otherwise.

int isgraph (int c); Returns a true value if c is a printing character other than a

space („ „) and 0 (false) otherwise.

COP 3223: C Programming (Strings – Part 4) Page 5 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 4) Page 6 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 4) Page 7 © Dr. Mark J. Llewellyn

An aside on the conditional operator ?

The previous example program utilizes the conditional operator ?. This C operator

is a sometimes useful shorthand replacement for an if-else control statement.

The conditional operator is the only ternary operator (ternary means 3-way) in C.

The conditional operator requires 3 operands. The operands together with the

conditional operator form a conditional expression.

The first operand is a condition, the second operand is the value for the entire

conditional expression if the condition is true and the third operand is the value for

the entire conditional expression if the condition is false.

The general form is: condition ? operand : operand;

An example is: grade >= 60 ? printf(“passed\n”): printf(„failed\n”);

COP 3223: C Programming (Strings – Part 4) Page 8 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 4) Page 9 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 4) Page 10 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 4) Page 11 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 4) Page 12 © Dr. Mark J. Llewellyn

Using String Conversion Functions

• Another sometimes useful operation that needs to be performed on

strings is their conversion into numeric formats.

• For example, converting the string “1234” into the integer value

1234.

• Again, the C standard library has several functions that perform this

task depending on the numeric type of the conversion.

• These functions are included in the <stdlib.h> standard library.

• The table on the next page lists some of the more common string

conversion functions in this library.

• Care should be used when dealing with such functions, particularly in

converting to integer types to ensure that overflow does not occur. If

it is possible to do so, the application should normally read numeric

types as numeric input rather than convert using these functions.

COP 3223: C Programming (Strings – Part 4) Page 13 © Dr. Mark J. Llewellyn

Some Of The String Conversion Functions In
<stdlib.h>

Function Prototype Function Description

double atof (const char *nPtr); Converts the string pointed to by nPtr to a double.

int atoi (const char *nPtr); Converts the string pointed to by nPtr to an int.

long atol (const char *nPtr); Converts the string pointed to by nPtr to a long

int.

• Example program using each of these three functions are shown on

the next page.

• Notice in each of the programs that after the string is converted to a

numeric type, the converted numeric value is used in an expression to

illustrate the conversion.

COP 3223: C Programming (Strings – Part 4) Page 14 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 4) Page 15 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 4) Page 16 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 4) Page 17 © Dr. Mark J. Llewellyn

Arrays Of Strings
• As a final example dealing with strings, we‟ll look at a

program that uses a two-dimensional array holding strings.
In other words, an array of strings.

• In the version shown here, we‟ll treat the 2-dimensional
array in much the same was that we have treated other
arrays, using implicit pointers being passed to functions
needing access to the array.

• We‟ll look in some more detail at pointer arithmetic later
and we‟ll revisit this problem and use explicit pointer
references.

• The following program reads lines of text, the number of
which is unknown in advance, from a file and stores the
text in a 2-dimensional array of strings.

COP 3223: C Programming (Strings – Part 4) Page 18 © Dr. Mark J. Llewellyn

The data file

COP 3223: C Programming (Strings – Part 4) Page 19 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 4) Page 20 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 4) Page 21 © Dr. Mark J. Llewellyn

The output

COP 3223: C Programming (Strings – Part 4) Page 22 © Dr. Mark J. Llewellyn

Practice Problems

1. Write a program that will read in three lines of

text from the keyboard (put the lines into a 2-

dimensional array). Once the lines are in the

array, process the strings so that for each

character in the alphabet you record the number

of times that character appeared in total in the

three lines of text. The output of the program

should show the total number of times each

letter appeared for all 26 letters in the alphabet.

